Kernel perfect and critical kernel imperfect digraphs structure

نویسندگان

  • Hortensia Galeana-Sánchez
  • Mucuy-kak Guevara
چکیده

A kernel N of a digraph D is an independent set of vertices of D such that for every w ∈ V (D)−N there exists an arc from w to N . If every induced subdigraph of D has a kernel, D is said to be a kernel perfect digraph. Minimal non-kernel perfect digraph are called critical kernel imperfect digraph. If F is a set of arcs of D, a semikernel modulo F , S of D is an independent set of vertices of D such that for every z ∈ V (D)−S for which there exists an Sz−arc of D − F , there also exists an zS−arc in D. In this talk some structural results concerning critical kernel imperfect and sufficient conditions for a digraph to be a critical kernel imperfect digraph are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the structure of kernel-perfect and critical kernel-imperfect digraphs

A kernel N of a digraph D is an independent set of vertices of D such that for every w ∈ V (D) − N there exists an arc from w to N . The digraph D is said to be a kernel-perfect digraph when every induced subdigraph of D has a kernel. Minimal non kernel-perfect digraphs are called critical kernel imperfect digraphs. In this paper some new structural results concerning finite critical kernel imp...

متن کامل

New classes of critical kernel-imperfect digraphs

A kernel of a digraph D is a subset N ⊆ V (D) which is both independent and absorbing. When every induced subdigraph of D has a kernel, the digraph D is said to be kernel-perfect. We say that D is a critical kernel-imperfect digraph if D does not have a kernel but every proper induced subdigraph of D does have at least one. Although many classes of critical kernel-imperfect-digraphs have been c...

متن کامل

KP-digraphs and CKI-digraphs satisfying the k-Meyniel's condition

A digraph D is said to satisfy the k-Meyniel’s condition if each odd directed cycle of D has at least k diagonals. The study of the k-Meyniel’s condition has been a source of many interesting problems, questions and results in the development of Kernel Theory. In this paper we present a method to construct a large variety of kernel-perfect (resp. critical kernel-imperfect) digraphs which satisf...

متن کامل

Kernels and perfectness in arc-local tournament digraphs

In this paper we give a characterization of kernel-perfect (and of critical kernel-imperfect) arc-local tournament digraphs. As a consequence, we prove that arc-local tournament digraphs satisfy a strenghtened form of the following interesting conjecture which constitutes a bridge between kernels and perfectness in digraphs, stated by C. Berge and P. Duchet in 1982: a graph G is perfect if and ...

متن کامل

Structural properties of CKI-digraphs

A kernel of a digraph is a set of vertices which is both independent and absorbant. Let D be a digraph such that every proper induced subdigraph has a kernel. If D has a kernel, then D is kernel perfect, otherwise D is critical kernel-imperfect (for short CKI-digraph). In this work we prove that if a CKI-digraph D is not 2-arc connected, then D − a is kernel perfect for any bridge a of D. If D ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2007